Training with Noisy Labeled Dataset

Cheng-Wei Lin Yu-Che Huang Kai-Hsiang Chou
Department of CSIE Department of CSIE Department of CSIE
National Taiwan University =~ National Taiwan University =~ National Taiwan University
r109221020ntu.edu.tw b079020660@ntu.edu. tw b077050220ntu.edu. tw

Abstract

Training on noisy data has become an important research area since the datasets are
not guaranteed to be clean and accurate. In this project, we survey some common
techniques of noisy training and present a framework that combines multi-round
training and label refurbishment. We showed that our method outperform the
normal training process. In the two-class classification problem, even when 40%
of the data is mislabeled, our model still gets an accuracy of 85%.

1 Introduction

Deep neural networks (DNNs) have demonstrated outstanding performance, even surpassing human
performance, in a variety of tasks, including computer vision, information retrieval, and language
processing, due to the recent development of large-scale datasets. Their success, however, relies on
the availability of large amounts of accurate data, which can be costly and time-consuming to retrieve.
To reduce the cost on labelling, some turn to non-expert sources like Amazon’s Mechanical Turk
or crowdsourcing. The usage of these sources, however, frequently leads in erroneous labelling. In
addition, labels can also be adversarially manipulated by attackers to attack on the models. These
faulty labels are referred to as noisy labels since some of them depart from the ground-truth labels
and are thus considered corrupted. Because of the learning capability that cause DNNs to overfit
on corrupted labels, DNNs are known to be prone to noisy labels, resulting in poor generalizability
on a test dataset. Regularization techniques are used in some common mitigations, such as data
augmentation, weight decay, dropout, and batch normalization. While these strategies can mitigate
the effects of noisy labels, they do not totally eliminate the problem of overfitting.

In this work, we proposed an algorithm that combined several well-known noisy training methods to
achieve a better result. We train the model, extract the outlying data by the correlation with the top
singular vector of the covariance matrix, as mentioned in ?, remove them from the dataset, and redo
the task. Moreover, we perform the label refurbishment. The removed data is relabeled and added
back to the training data if the confidence of the label generated by the model surpasses a threshold.

We set up an experiment to verify the efficiency of the proposed algorithm. From the CIFAR-100
dataset, we selected two similar classes, and randomly shift some of their labels. The experiment
shows that our algorithm outperforms the normal training which doesn’t apply any noisy label
mitigation.

2 Background

2.1 Noisy Learning

In this section, we briefly discuss the existing methods of DNN training on the noisy labeled dataset.
Following the taxonomy proposed by Song et al|Song et al.|[2021]], we categorize deep-learning-based

Preprint. Under review.

noisy learning into six categories. For each method, we would discuss the limitation of these methods
and they help inspire our algorithm.

Data Cleaning By removing the examples whose labels are likely to be corrupted can result in clean
training data. Given that mislabeled examples tend to have higher weights than correct examples,
bagging and boosting can be used to select and remove examples with higher weights. Other methods,
such as k-nearest neighbor, outlier detection, and anomaly detection, are also commonly used to
filter out the mislabeled examples that have abnormal distribution. However, these methods may
cause over-cleaning issues, which remove correct examples and therefore result in a less accurate
distribution in the dataset.

Robust Architecture Researchers have tried to fix the issue by changing the architecture of the
DNNs. A common approach is to add a Noise Adaptation Layer on top of the softmax layer, in order
to model the noise transition matrix (i.e., the noisy label transition pattern.) However, the drawback
of these methods is that they treat all examples equally so that they can’t identify the mislabeled
examples. Another approach is to design dedicated architectures that are capable of estimating the
label transition probability. Nevertheless, these methods are limited to specific architectures and can’t
be applied to other architectures.

Robust Regularization The problem of noisy-labeled data comes from the fact that DNNs are prone
to overfitting. Therefore, by avoiding overfitting, the model would be more robust when training on the
mislabeled dataset. Some widely-used regularization techniques include data augmentation, weight
decay, dropout, and batch normalization. The explicit regularization techniques, such as dropout and
weight decay, can be difficult in tuning the hyperparameters or require deeper architecture to maintain
the same learning capability. The implicit regularization techniques, such as data augmentation or
label smoothing, improve the generalization capability but are often harder to converge.

Loss Adjustment The idea of loss adjustment is to reduce the negative impact of the mislabeled
data on the loss of all training data. It can be adjusted into three categories. Loss correction estimate
the label transition matrix and utilize it to correct the loss. This requires prior knowledge of the
clean data so that the transition matrix can be estimated. Loss reweighting apply different weights to
examples, to reduce the impact of mislabeled data, and emphasize the correct examples. This requires
tuning the hyperparameter, which can be difficult in practice. Label refurbishment adjust the loss
by the refurbished label, which is generated by the convex combination of the original (probably
noisy) label and the predicted one. The problem of it is that, if there are too much mislabeled data,
the DNNs may overfit these incorrect data. Label refurbishment is used by our algorithm, and we
will discuss the impact of the proportion of mislabeled data on the accuracy of noisy training.

Sample Selection Some recent researches adopted sample selection to remove the mislabeled
examples. A common technique is Multi-network Learning, which uses several DNNs with different
architecture. In the co-learning and collaborative model, a pre-trained mentor model would “guide”
the student models using the data that is probably correct. Another common technique is Multi-round
Learning, which doesn’t have to maintain several DNNs. Instead, it iteratively removes the outliers,
and retrain with the refined dataset. Though learning using sample selection usually works well, it
suffers from accumulated error due to wrong selection. Similar to the problem of label refurbishment,
if the ratio of mislabeled examples or uncleared classifications is too high, the DNNs might remove
the correctly-labeled examples and overfit the mislabeled examples. We apply the multi-round
learning to our algorithm, and will discuss its effectiveness in the experiments.

2.2 Spectral Signature

The backdoor attack on the DNNss is a type of data poisoning. They are considered dangerous because,
while manipulating the output on carefully constructed examples, they do not affect the overall
performance, and that the predictions on the benign data look benign. This makes backdoor attacks
hard to be detected. Tran et al. ? proposed mitigation to the backdoor attacks. Combining several
techniques of robust statistics, which they called spectral signature, can separate the mislabeled data.
Intuitively, when the training examples for a certain label consist of two sub-populations, the training
set for that label may have been corrupted. There will be a large number of correctly labeled examples
and a small number of mislabeled examples. If two populations are sufficiently well-separated, the

corrupted examples can be recognized and therefore removed by using singular value decomposition,
according to the aforementioned robust statistics procedures. That is, we can detect the outliers in the
representation level.

3 Methodology

3.1 Algorithm Design and Implementation

Noisy
Featt
Labeled :aa\:;e
Data P

I3

‘ Image ‘

v

ResNet-101

v

Flatten

Remove
Outlying
Samples

Re-train

v

v

Label
Refurbishment

Relabeled
Data

v

‘ Output ‘

Multiple Rounds

(a) Flow chart of the algorithm (b) The architecture of the
testing model.

Figure 1: The flow chart and the model architecture.

Our algorithm combined multi-round learning and label refurbishment. The flow chart is showed in
Figure[Ta

To train a model with noisy labeled data, we first train it normally. Then, for every label class in the
dataset, apply spectral signature to the feature space of the class according to the trained model. The
examples with the top 5557 scores are removed from the dataset. The formula 5557 is chosen
such that earilier round should remove more outliers to prevent overfitting from the very start of the
training. Next, the cleaned dataset is used to retrain the neural network. Following retraining of the
model, the removed labels are then refurbished. We use the newly trained model to predict the label
of every removed example, and if the model is confident about the true label, the example is added
back to the dataset with the predicted label. The process is repeatedly several times until either the
convergence or the threshold reach.

We implement the algorithm in Tensorflow. The source code is attached in the submission.

3.2 Experiment Design

We design a experiment to examine the effectiveness of our algorithm. The task is to classify two
classes of examples sampled from CIFAR-100, and the ratio 7 of the labels are swapped. We choose
(caterpillar, worm) and (apple, bus) for demonstration. We train the model using our algorithm on
the constructed noisy dataset containing only two selected classes. After each round, we calculate the
overall accuracy of the model and the label accuracy. The label accuracy is defined as the accuracy of
the refurbished label, that is, what ratio of the refurbishment is correct. We perform the experiment
on several different mislabeled ratio . The model for testing is ResNet-101. We use a pre-trained
ResNet-101 on ImageNet, connected with a dropout (rate=0.5) and a fully-connected layer, and
perform a transfer learning on the model. The model architecture is shown in Figure[Tb] With accurate
labels, this model reaches 0.95 accuracy. In the experiment, every training, including the transfer
learning of the base model, uses an SGD optimizer with a learning rate of 0.001 and momentum 0.9,
and is trained for 32 epochs. The confidence threshold is set to 0.99.

Given that the outlier detection was performed in the feature space, we wonder if the distance in the
feature space affect the effectiveness of our algorithm. Therefore, we choose several pair of classes
that is known to be difficult to classify. By this experiment, we can analyze whether the algorithm
still works in the case when classifications are unclear.

Method r=0 r=01 r=02 r=03 r=04 r=045

Normal Training 0.95 0.88 0.785 0.635 0.525 0.515
Noisy Training 095 0.925 0.915 0.91 0.85 0.85
Label Accuracy 0.956 0.901 0.897 0.863 0.825 0.825

Table 1: The testing accuracy of the normal training and noisy training after 64 rounds.

4 Results

Our first experiments showed that, after 64 rounds of training and label refurbishment, our noisy
training method successfully removes and refurbishes the mislabeled data, for it clearly outperforms
the normal training method. The full experiment results are listed in Table[I] Starting from the case
when r = 0.1, while the accuracy of the normal training fall by 7%, the accuracy of our noisy training
algorithm only falls by 0.25%, and the accuracy of refurbishment is over 0.9. Even in the case when
45% of the data is mislabeled, the noisy training algorithm still maintains the accuracy of 0.85, while
the normal training is only a little better than random guessing. Note that since this is a two-class
classification problem, the baseline (random guessing) is 50% and that if » = 0.5, the label gives no
information. Therefore, we only tried the cases when r < 0.5.

Then, we look into how each component of the algorithm works.

First of all, we want to examine whether outlier detection works. For the (caterpillar, worm) case,
we plot the feature space of the model in the first round, that is, when we have not to do any outlier
removal or label refurbishment. The histogram is shown in Figure [2a] and Figure [2b] To our surprise,
there is no clear cut between the two sub-population, as mentioned in ?, but the noisy training still
works. We propose two possible explanations for this. First, in the original work, they also added
watermarking to the mislabeled examples, which may help separate two sub-population. Meanwhile,
we only swap the label but the content of the images is still the same. Second, while there is no
clear cut when the correlation is small, the number of correct data is so overwhelming so that the
mislabeled data cannot influence the model, while when the correlation is large, but correct examples
and mislabeled examples are removed. Therefore, even though the outlier removal is not as effective
as we originally expected, the noisy training still works. As we can see in Figure [2c|and Figure 2d}
after 64 rounds of training and refurbishment, the histogram is rather clean and most outliers with
high correlation are removed. The results for the other experiments (apple, base) are shown in
Figure[2¢]to Figure 2f] We also see similar trends.

The second question is, whether the label refurbishment works as expected. In both experiments (
Figure [3a) and Figure [3b)), we can see that the label accuracy (the ratio of correct refurbishment) is an
upward trend in general. After 64 rounds of training, the accuracy of the refurbishment has exceed
90%.

5 Discussion

5.1 Cases when the algorithm fails

We observed that in some label pairs ((automobile, truck) and (apple, orange)), our algorithm failed,
such that the normal training process outperforms the noisy training process. We suspect that both
labels have similar distribution in the feature space. Take (apple, orange) with r = 0.2 as example.
From Figure [#a] and Figure @b we can see that there are no cuts between two classes. Therefore, by
cutting of the outliers, we actually removed the correct examples. Therefore, the label accuracy, as
showed in Figure [4c| falls during the training.

5.2 Limitation

Due to the time constraint, we have not compared our noisy training algorithm with other well-known
algorithms. Therefore, while we know that our method outperforms the normal training process, we
do not know how much our improvement is.

Histogram Histogram

25 35

20

15

Number of data
-
wn
Number of data

10

0 N 0 |I| S T

1
0 2000 40b0 60'00 80'00 100'00 0 2000 4000 6000 8000 10000
Correlation Correlation

(a) The correlation of caterpillar in the first round. (b) The correlation of worm the first round. The
The red bars are the mislabeled examples. green bars are the mislabeled examples.

i Histogram
» Histogram 0 9

i) p)

~
=]

20

Number of data
&
Number of data
= =
o wn

w
wn

1 111
0 T T T T 0 T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Correlation Correlation

(c) The correlation of .caterpillar after 64 rounds. (d) The correlation of worm after 64 rounds. The
The red bars are the mislabeled examples. green bars are the mislabeled examples.

Histogram Histogram
0 30

5 25

20

Number of data
]
Number of data
I

T T T T T - T T T T T T
o 5000 10000 15000 20000 25000 30000 o 5000 10000 15000 20000 25000 30000
Correlation Correlation

(e) The correlation of apple after 64 rounds. The (f) The correlation of bus after 64 rounds. The
red bars are the mislabeled examples. green bars are the mislabeled examples.

Figure 2: Correlation of the experiments.

Also, the common drawback of multi-round noisy training is that the training process is too slow. In
our experiment, we trained 129 models just for a simple task. When the model becomes bigger, the
algorithm would take too much time to train in practice.

Lastly, due to the long training time, we are unable to perform large scale experiments. As we found
that in some label pairs, our method does not work well, but we do not know how often these cases
are.

6 Conclusion

In this report, we present a noisy training model that combines multi-round learning and label
refurbishment. Dataset can be noisy, i.e. contain mislabeled examples, for many reasons, and
sometimes considered inevitable. By repeatedly doing outlier removal and relabeling the incorrect

Label Accuracy Label Accuracy

0.90 0.96
" ("—‘/\—\‘N——,—J
088
0.92
E; 086 § 0.90
E é 0.88
084
s 2 oss
0.82 nas
0.82
080 0.80
0 10 20 S 0 & 0 10 20 0 @) &
Rounds Rounds

(a) The label accuracy of the noisy learning from (b) The label accuracy of the noisy learning from
caterpillar and worm. apple and bus.

Figure 3: Label accuracy of the experiments.

Histogram Histogram
30 0
25 5
= 201 m 20 4
= e}
=l =l
w w
o 215
I o
£ £
£ £
2 10 A ERUE
5 5
0- S T ; T : 0 k " ; T T :
] 5000 10000 15000 20000 25000 30000] 5000 10000 15000 20000 25000 30000
Correlation Correlation

(a) The correlation of apple after 64 rounds. The (b) The correlation of orange after 64 rounds. The
green bars are the mislabeled examples. green bars are the mislabeled examples.

Label Accuracy

080 q

075

070

Accuracy

065

060

0 10 0 0 40 50 60
Rounds

(c) The label accuracy of the noisy learning from
apple and orange.

Figure 4: The results of failed noisy training on (apple, orange).

examples, we can improve the performance of the model when training on a noisy dataset. Our
preliminary experiment shows that this model clear outperforms the normal training process. However,
this algorithm does not perform well when two classes get too close in the feature space, and we
consider this a possible direction of improvement in the future.

References

H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee. Learning from noisy labels with deep neural
networks: A survey, 2021.

	Introduction
	Background
	Noisy Learning
	Spectral Signature

	Methodology
	Algorithm Design and Implementation
	Experiment Design

	Results
	Discussion
	Cases when the algorithm fails
	Limitation

	Conclusion

