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ABSTRACT 

 

In this paper, we propose LinAlign: a computer vision 

algorithm for aligning X-ray images before and after 

surgery, providing a system for surgeons to compare 

images before and after surgery more efficiently and 

replace manually aligning procedure. LinAlign allows 

only align specific area when aligning images, and solve 

the problem that linear transformation cannot be 

performed on non-rigid objects. Therefore, it is suitable 

for comparing the position of bones during the hip 

replacement surgery, allowing orthopedic surgeons to 

make sure that implants have been installed correctly. 

 

In our experiment, we took the X-ray images of the 

pelvis as our experimental data: each set of images 

contains the X-ray photographs of the same patient taken 

at different times. We experiment with different methods. 

By comparing similar features between images and 

calculating the displacement of these feature points, the 

images can be aligned. 

 

We evaluate the performance of the algorithm by the 

error of pre-defined landmarks after alignment. These 

landmarks are anatomically important features of the 

skeletal system. The goal of our experiment is to 

minimize the distance of landmarks between image pair. 

We take the mean square error of these landmark 

distances as the performance metric to our algorithm. 

 

Keywords: LinAlign, Medical Image Processing, Feature 

Matching, Semantic Segmentation, Image Alignment 

 

1. INTRODUCTION 

 

In orthopedic surgery, surgeons will take X-ray image 

and compare it with the image taken before surgery to 

ensure the surgery is accurate. We aim to develop a 

system to align these images. When surgeons need to 

compare the current image with the image taken before 

surgery, our system can align the previous one with 

current one automatically. Therefore, they are no longer 

need to print the hardcopy of radiographs and compare 

them manually. 

 

Our research focuses on the radiograph taken from 

Total Hip Arthroplasty (THA), which is a surgical 

procedure where the hip joint is replaced by a prosthetic 

implant. Fig. 1 shows the radiographs taken before and 

after THA, and Fig. 2. shows the components of the 

implant used in THA. 

 

 
Fig. 1. An X-ray image showing a left hip has been 

replaced with prosthetic implant due to advanced 

femoral head collapse. [11] 

 

 
Fig. 2. The components of prosthetic implant for total 

hip replacement. [10] 

    Total hip arthroplasty is a major surgery that carries 

certain risks. Including: Infection, dislocation, limb 



length inequality, fracture, etc. Dislocation is the most 

common complication in this surgery. For example, the 

ball coming out of the socket. It may be caused by 

misalignment of the prosthetic implant and hip joint, 

which can be reduced by ensuring the location of them 

are correct during the surgery. Our system is designed to 

reduce these risks. 

 

 
Fig. 3. The dislocation of the femoral head. [2] 

 

2. RELATED WORK 

 

2.1. Feature Matching 

 

Feature matching in computer vision is the process of 

identifying and comparing the same or similar features in 

two or more images. Often, the matching result contains 

several wrong correspondences, which can easily affect 

our application. To prevent the effect of outlying data, a 

noise removal phase such as RANSAC (RANdom 

SAmple Consensus) [6] is usually applied at the end. 

With this process, the noisy matching can be almost 

removed. 

 

Depending on the approach, feature matching 

methods can be categorized into two types: detector-

based feature matching and detector-free feature 

matching. Detector-based methods require a feature 

detector to extract and describe local features, and then 

match these feature points. As for detector-free methods, 

they remove the feature detector phase and directly 

produce dense descriptors or dense feature matches 

instead. 

 

Feature matching can be used in various computer 

vision tasks, such as image registration, object 

recognition, Simultaneous Localization And Mapping 

(SLAM), and Structure-from-Motion (SfM). 

 

 

 

 

2.2. Homography Estimation 

 

Homography estimation is a computer vision task that 

finds a mathematical relationship (i.e. a homography 

matrix) between multiple images taken from different 

perspectives. The homography matrix estimation is based 

on corresponding points between two images and can be 

computed mathematically such as direct linear 

transformation, normalizing direct linear transform. 

Homography estimation can be used in computer vision 

tasks such as image alignment, image stitching, image 

mosaicing, and object recognition. 

 

2.3. Semantic Segmentation 

 

Semantic segmentation is a computer vision task 

assigning the semantic label to each pixel in the image. 

The goal is to categorize each pixel in the image into one 

of several predefined classes. The result of semantic 

segmentation is a dense prediction, where every pixel in 

the image is assigned with a color-coded class label. 

Semantic segmentation is a crucial task for various 

applications such as self-driving cars which can make the 

decisions informed by its fine-grained prediction of the 

environment. 

 

Recently, deep neural networks achieve successful 

performance in semantic segmentation, such as Fully 

Convolutional Networks (FCN) [8], SegNet [1], U-Net 

[12], DeepLab [3], and so on. The networks take an 

image as input and outputs a corresponding segmentation 

mask where each pixel is assigned a class label. 

 

2.4. Image Alignment 

 

Image alignment is the process of matching and adjusting 

the relative positions of images to align them with each 

other. By the matching of common features between 

multiple images, we can align the images so that the same 

feature in different images correspond to the same real-

world location. 

 

There are two common methods for image alignment: 

feature point-based alignment and optical flow alignment. 

Feature point-based alignment aims to align the feature 

point correspondences in multiple images by calculating 

the global transformation matrices between them. Since 

it is a linear transformation, it can only perform the 

translation, rotation, and scaling on rigid body. In other 

words, the motion in images is restricted to be globally 

uniform. As for optical flow alignment, it aligns images 

by remapping with dense correspondences. Since it is an 

one-to-one correspondence between pixels, images can 

be aligned accordingly, but its result is often unstable. 

 



3. METHODOLOGY 

 

We propose LinAlign for aligning X-ray images before 

and after surgery. Since the pose in X-ray images may be 

different and cannot be aligned linearly, we propose a 

new strategy to compute homography to deal with this 

issue.  

For an X-ray image pair, we first perform the feature 

matching to compute the point correspondences between 

both images. Simultaneously, we compute the probability 

map of pelvis with a semantic segmentation model, 

which results in images with pixel-wise class prediction. 

Then, we assign the weight to each point correspondence 

with the product of class confidence on both images, and 

perform the homography estimation using weighted 

normalized Direct Linear Transform (DLT) on these 

correspondences. Finally, we align both images with 

perspective transformation. Fig. 4. shows the pipeline of 

LinAlign algorithm. 

 

3.1. Feature Matching 

 

We use LoFTR [14] to match the feature points from two 

images. LoFTR predicts thousands of dense point 

correspondences, and it works even in low-texture area. 

These correspondences are accurate and robust, so they 

give us good information for image alignment. 

 

Our LoFTR model was pre-trained on MegaDepth [7] 

dataset, which contains large amount of outdoor scene 

images collected from Internet with depth map 

annotations. LoFTR learns how to match the dense 

features directly, so it can be easily adapted to other 

domains, even the scene is very different from training 

datasets. Thus, it achieves good performance in our 

application.  

 

After feature matching, some outlying 

correspondences may exist. Since our goal is to align the 

images, these outlying data can seriously affect our 

results, even with only small number of outliers. To 

prevent this effect, we apply a noise removal phase using 

RANSAC at the end. Thus, we can select the good 

matchings that are helpful to align the images. Fig. 5. 

shows the feature matching prediction of LoFTR tested 

on our data. Applying the RANSAC can remove the 

correspondences that are outlying to the linear transform. 

 

 
Fig. 5. The feature matching results with LoFTR [14]. 

(a) Original image pair; (b) matching result; (c) 

Matching result with outlier removal using RANSAC. 

3.2. Pelvis Segmentation 

 

In our application, we aim to compare the location of the 

hip joint before and after surgery. Since the human body 

is non-rigid, it may have pose difference and cannot align 

Fig. 4. The pipeline of LinAlign algorithm. 



the whole body with linear transformation. However, in 

this application, we only need to align the pelvis part well, 

which is the rigid part. Therefore, in this procedure, we 

segment the pelvis part from images, and use it to 

improve the alignment. 

 

We segment the pelvis part with U-Net++ [16], which 

is an improved version of U-Net [12]. We use X-ray 

images of the pelvis to train our model, with 191 images 

as training data, and 33 images as validation data. Pixels 

in each image are labeled with two classes, where label 0 

is background, and label 1 is pelvis. 

 

The model outputs a probability map with the size 
(𝑁,𝐻,𝑊), where 𝑁 is the number of classes; 𝐻 and 𝑊 

are the height and width of input image. Each pixel 

represents the class prediction. We take the probability 

prediction of pelvis as our result to support our image 

alignment. Fig. 6.  shows the probability map prediction 

on our dataset using our U-Net++ model. The pelvis area 

can be segmented perfectly so is helpful to our algorithm. 

 

 
Fig. 6. The probability map prediction result of our data. 

3.3. Weighted Normalized DLT 

 

We propose a new method to estimate homography from 

point correspondences: weighted normalized DLT 

(Direct Linear Transform). Since the goal of our 

algorithm is to compare two images taken before and 

after surgery, it would be more suitable for comparison if 

we align the pelvis area better. Therefore, we modify the 

previous homography estimation methods to fit our 

requirement. 

 

Our method is done by assigning the weight on each 

correspondence while computing the normalized DLT. 

Therefore, the correspondence with higher weight can be 

more likely to aligned. 

 

3.3.1. DLT 

Assume that we are given 𝑁 correspondence key point 

pairs, where the point correspondences are 
{(𝑢𝑖 , 𝑣𝑖), (𝑢𝑖

′, 𝑣𝑖
′)|𝑖 = 1,… ,𝑁} , 𝜆𝑖 is a point-dependent 

scale factor, we have 

𝜆𝑖 [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

] [
𝑢𝑖

𝑣𝑖

1
] = [

𝑢𝑖
′

𝑣𝑖
′

1

] 

Then, we find the homography matrix 𝐻 by replacing the 

equation into matrix form. 

[
 
 
 
 
 
𝑢1 𝑣1 1 0 0 0 −𝑢1

′ 𝑢1 −𝑢1
′𝑣1 −𝑢1

′

0 0 0 𝑢1 𝑣1 1 −𝑣1
′𝑢1 −𝑣1

′𝑣1 −𝑣1
′

𝑢2 𝑣2 1 0 0 0 −𝑢2
′ 𝑢2 −𝑢2

′ 𝑣2 −𝑢2
′

0 0 0 𝑢2 𝑣2 1 −𝑣2
′𝑢2 −𝑣2

′𝑣2 −𝑣2
′

⋮
⋮ ]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

ℎ6

ℎ7

ℎ8

ℎ9]
 
 
 
 
 
 
 
 
 

= 0 

→ 𝐴𝒉 = 0 

 

Since the Degree of Freedom (DoF) for perspective 

transformation is 8, we need at least 4 correspondences 

to find the non-trivial solution to this equation. We thus 

solve the least-squared-error solution: 

min
𝒉

‖𝐴𝒉‖2 ,        s. t.    ‖𝒉‖2 = 1 

The solution is equivalent to 

argmin
𝒉

‖𝐴𝒉‖2

‖𝒉‖2
=

ℎ𝑇𝐴𝑇𝐴ℎ

‖𝒉‖2
 

 

According to the principle of Rayleigh quotient, the 

solution of 𝒉  is the eigenvector corresponding to the 

smallest eigenvalue of matrix 𝐴𝑇𝐴. Thus, the solution 

can be obtained by performing the Singular Value 

Decomposition (SVD) on 𝐴 , so we get 𝐴 = 𝑈𝛴𝑉𝑇 , 

where the singular values in 𝛴 are arranged in descending 

order. The solution is then the last column of 𝑉. 

 

3.3.2 Normalized DLT 

There is a shortcoming in DLT. When we compute the 

linear transform, the 𝑥, 𝑦  coordinate on the image is 

typically much larger than 𝑧 coordinate since 𝑧 is always 

equal to 1. The different order of coordinate results in an 

ill-conditioning number of matrix 𝐴  and numerically 

unstable solutions. To get more stable results, we can 

normalize on every point before direct linear 

transformation. Assume 𝑇,   𝑇′  are the transformation 

matrices that normalize the points (𝑢𝑖 , 𝑣𝑖), (𝑢𝑖
′, 𝑣𝑖

′) 

respectively, 

𝑇 = [
𝑠 0 𝑚𝑥

0 𝑠 𝑚𝑦

0 0 1

]

−1

 

where 𝑠 is standard deviation of coordinate, and 𝑚𝑥, 𝑚𝑦 

are the mean of 𝑥-axis and 𝑦-axis. After performing the 

direct linear transformation on normalized 

correspondences point, we get 𝐻̂ . The transformation 



matrix between (𝑢𝑖 , 𝑣𝑖)  and (𝑢𝑖
′, 𝑣𝑖

′)  will be 𝐻 =

𝑇′−1𝐻̂𝑇. Thus, 

𝜆𝑖 [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

] [
𝑢𝑖

𝑣𝑖

1
] ≈ [

𝑢𝑖
′

𝑣𝑖
′

1

] 

 

3.3.3 Weighted Normalized DLT 

 

In previous methods, point correspondences have the 

same weight during the homography estimation. 

However, in our application, we want our interested area 

(i.e., pelvis area) more likely to be aligned, so we can 

compare the images better. Weighted Normalized DLT is 

done by modifying the equation of Normalized DLT. We 

re-weight the rows in 𝐴, so we get 

[
 
 
 
 
 𝑤1 [

𝑢1 𝑣1 1 0 0 0 −𝑢1
′ 𝑢1 −𝑢1

′ 𝑣1 −𝑢1
′

0 0 0 𝑢1 𝑣1 1 −𝑣1
′𝑢1 −𝑣1

′𝑣1 −𝑣1
′ ]

𝑤2 [
𝑢2 𝑣2 1 0 0 0 −𝑢2

′ 𝑢2 −𝑢2
′ 𝑣2 −𝑢2

′

0 0 0 𝑢2 𝑣2 1 −𝑣2
′𝑢2 −𝑣2

′𝑣2 −𝑣2
′ ]

⋮
⋮ ]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
ℎ1

ℎ2

ℎ3

ℎ4

ℎ5

ℎ6

ℎ7

ℎ8

ℎ9]
 
 
 
 
 
 
 
 
 

= 0 

→ 𝐴′𝒉̂ = 0 

 

We solve 𝐴′𝒉̂ = 0  in the same approach as we 

described in Section 3.3.1, we get 𝐻̂ . Then, we 

denormalize it to get the homography matrix 𝐻 =
𝑇′−1𝐻̂𝑇. Thus, we have 

𝜆𝑖𝐻 [
𝑢𝑖

𝑣𝑖

1
] ≈ [

𝑢𝑖
′

𝑣𝑖
′

1

] 

 

3.4. Image Alignment 

 

We align the images using perspective transformation. 

For given point correspondences and the probability map 

of pelvis area determined by segmentation model, we 

tried two methods to compute the homography matrix. 

 

Let 𝑃𝑐
1, 𝑃𝑐

2 be the probability map prediction of class 

𝑐 from semantic segmentation model; and  

𝑀 = {(𝑢𝑖 , 𝑣𝑖), (𝑢𝑖
′, 𝑣𝑖

′)|𝑖 = 1,… ,𝑁} 
be our keypoint correspondences. In Method 1, we filter 

the keypoints with the label prediction, and compute the 

normalized DLT with the keypoints within pelvis area 

only. Take  

{(𝑢𝑖 , 𝑣𝑖), (𝑢𝑖
′, 𝑣𝑖

′)|𝑃𝑝𝑒𝑙𝑣𝑖𝑠
1 (𝑢𝑖 , 𝑣𝑖)

≥ 0.5 𝑎𝑛𝑑 𝑃𝑝𝑒𝑙𝑣𝑖𝑠
2 (𝑢𝑖 , 𝑣𝑖) ≥ 0.5 } 

to compute normalized DLT; As for Method 2, we assign 

the weight with the product of the confidence score of 

pelvis from both images to compute weighted normalized 

DLT. i.e., 𝑤𝑖 = 𝑃𝑝𝑒𝑙𝑣𝑖𝑠
1 (𝑢𝑖 , 𝑣𝑖) × 𝑃𝑝𝑒𝑙𝑣𝑖𝑠

2 (𝑢𝑖
′, 𝑣𝑖

′) . Tested 

these methods on our datasets and compare them with 

normalized DLT method, we finally take Method 2 

because it has better performance. 

 

3.5. Result Visualization 

 

In order to make surgeons easier to compare the images 

using alignment result, we visualize the alignment using 

CDM (Color Difference Map), implemented based on 

YCbCr color space, where 𝑌 is the luminance, and 𝐶𝑏 

and 𝐶𝑟 are the blue-difference and red-difference chroma 

components. 

 

Assume that 𝐼1,  𝐼2 is our image pair, where 𝐼2 is our 

target image. These images are grayscale images. We 

align 𝐼1 with 𝐼2, so we get a transformed image 𝐼1
′ . The 

CDM is determined by assigning overlapping image to 𝑌, 

and color difference to 𝐶𝑟 and 𝐶𝑏. i.e., 𝑌 = (𝐼1
′ + 𝐼2)/2; 

𝐶𝑟 = (𝐼2 − 𝐼1
′)/2; 𝐶𝑏 = (𝐼2 − 𝐼1

′)/2 in Fig. 7. 

 

 
Fig. 7. The visualization of our aligning results. (a) The 

overlapping image. (b) The Color Difference Map 

(CDM). 

4. EXPERIMENTAL RESULTS 

 

4.1. Datasets 

 

We experiment with a dataset of pelvis radiographs 

which contains 224 radiographs collected from 49 

patients. 

 

In our application, we require semantic segmentation 

dataset for model training, and pelvic landmarks dataset 

for performance evaluation. We create these by labeling 

our first dataset with pelvis mask and landmark point set. 

To test the repeatability, we experiment our algorithm on 

both datasets. Fig. 8. shows a part of our segmentation 

dataset. Fig. 9. shows the definition of landmarks 

 

 
Fig. 8. Samples of our segmentation dataset containing 

pelvis radiographs and the mask annotations. Some of 

them are taken after THA surgery. 



 
Fig. 9. Definition of the landmarks. (a) Normal. (b) 

With implants. 

4.2. Feature Matching Experiment 

 

Feature matching is a crucial step in our application. To 

improve our alignment, we experiment with three feature 

matching methods, SIFT [9], SuperPoint [5] + SuperGlue 

[13], and LoFTR [14].  

 

We evaluate the alignment performance using MRE 

(Mean Radial Error). Given keypoint correspondences 

{(𝑢𝑖
1, 𝑣𝑖

1), (𝑢𝑖
2, 𝑣𝑖

2)|𝑖 = 1,… ,𝑁}  as our ground truth, 

where (𝑢𝑖
1, 𝑣𝑖

1), (𝑢𝑖
2, 𝑣𝑖

2)  are the pre-defined landmarks 

on both images. For every keypoint pair, calculate the 

distance between (𝑢𝑖
1, 𝑣𝑖

1)′  and (𝑢𝑖
2, 𝑣𝑖

2) , where 

(𝑢𝑖
1, 𝑣𝑖

1)′ is the projection of (𝑢𝑖
1, 𝑣𝑖

1). Thus, the error is 

defined to be 

𝑀𝑅𝐸 =  
1

𝑁
∑‖(𝑢𝑖

1, 𝑣𝑖
1)′ − (𝑢𝑖

2, 𝑣𝑖
2)‖2

𝑁

𝑖=1

 

We perform the homography test on our landmark dataset, 

by estimating the homography using RANSAC [6]. 

LoFTR gets the best result finally, so we select LoFTR in 

our LinAlign algorithm. Table 1. shows the homography 

estimation results. 

 
Table 1. Homography estimation results. (↓: The lower, 

the better.)  

Methods SIFT SP+SG LoFTR 

MRE ↓ 0.134639 0.015056 0.014456 

 

4.3. Semantic Segmentation Experiment 

 

We experiment with four state-of-the-art semantic 

segmentation models: U-Net [12], U-Net++ [16], 

DeepLabV3+ [4], and PSPNet [15], tested on our 

segmentation dataset.  

 

These models are trained in the same conditions. They 

trained with 64 epochs, supervised with pixel-wise cross 

entropy loss, and the data augmentation strategies are 

random horizontal flip, random shift-scale-rotation, 

random brightness contrast, and random resized crop. We 

take the IoU (Intersection over Union) score of pelvis 

area as our performance, where  

IoU =
TP

TP + FP + FN
 

Table 2. shows the IoU score on our validation data. U-

Net++ is the best model in our experiment. 

 

Table 2. Semantic segmentation test on our validation 

set. (↑: The higher, the better.) 

Model U-Net U-Net++ 
DeepLab 

v3+ 
PSPNet 

IoU 

Score ↑ 
0.9233 0.9314 0.9246 0.7236 

 

 
Fig. 10. Segmentation results on validation set. 

 

4.4. Image Alignment Experiment 

 

We experiment both proposed methods in section 3.3 and 

normalized DLT on our landmarks dataset to compare the 

performance, using MRE of landmarks as our evaluation 

protocol. Tested with i7-9770 and RTX 2080ti, the 

inference time for an image pair is 2.23 seconds. Table 3 

shows the MRE scores of these methods. The following 

figures show the experimental results. In (d), red points 

are landmarks on the transformed image, and blue points 

are landmarks on the target image. Extensive 

experiments show that our algorithm can align most of 

the images well. However, due to the complexity of 3D 

structure of pelvis, it is difficult to handle the view 

difference, but we still can align the joint part as well as 

possible. 

 

Table 3. Image alignment testing results. (↓: The lower, 

the better.) 

Method 
Normalized 

DLT 
Filtered 

Re-

weighted 

MRE ↓ 0.014470 0.014165 0.013985 

 



 
Fig. 11. Alignment result 1. (a) Original image pair. (b) 

Matching result. (c) Matches within pelvis area. (d) 

Alignment results with landmarks. (e) CDM. (The MRE 

are 0.013362, 0.012644, 0.012767 respectively.) 

 
Fig. 12. Alignment result 2. (a) Original image pair. (b) 

Matching result. (c) Matches within pelvis area. (d) 

Alignment results with landmarks. (e) CDM. (The MRE 

are 0.01024, 0.009574, 0.009485 respectively.) 

 
Fig. 13. Alignment result 3. (a) Original image pair. (b) 

Matching result. (c) Matches within pelvis area. (d) 

Alignment results with landmarks. (e) CDM. (The MRE 

are 0.011629, 0.009012, 0.008951 respectively.) 

 
Fig. 14. Alignment result 4. (a) Original image pair. (b) 

Matching result. (c) Matches within pelvis area. (d) 

Alignment results with landmarks. (e) CDM. (The MRE 

are 0.011314, 0.011278, 0.011282 respectively.) 

 



 
Fig. 15. Failure alignment result. (a) Original image 

pair. (b) Matching result. (c) Matches within pelvis area. 

(d) Alignment results with landmarks. (e) CDM. (The 

MRE are 0.034356, 0.032245, 0.03253 respectively.) 

5. CONCLUSION 

 

We propose LinAlign algorithm, which combines the 

results of semantic segmentation to homography 

estimation by weights assignment. LinAlign can 

successfully align the images of non-rigid bodies with 

partial differences by applying stricter alignment to our 

interested part. Tested on our dataset, our method has 

better performance compared with other alignment 

algorithm. 

 

We also visualize the alignment results in CDM, 

which can obviously see the difference between two 

images. With this algorithm, surgeons can ensure the 

location of implants are correct during the surgery, and 

can prevent the risks such as dislocation after the surgery. 
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